Page 48 - 2020-6
P. 48
总体较前者严重。2009/2010 年湄公河干流沿程均发生了水文干旱,而 2012/2013 年各站均未发生水
文干旱。鉴于两个气象干旱年份临近,流域内其他变化较小,湄公河干流上游段出现上述现象应主
要源于澜沧江水库发挥的“补枯”作用。
(4)2012/2013 年干季,澜沧江梯级水库发挥径流调节作用,景洪水库下泄流量比多年平均径流
量增加 50.8 亿 m ,增幅达 43%;2012/2013 年干季比 2009/2010 年同期径流量增加 67.0 亿 m ,增幅
3
3
3
66%。清盛水文站 2012/2013 年干季径流量比多年平均径流量增加 53.6 亿 m ,增幅 30%;同时 2012/
3
2013 年干季径流量比 2009/2010 年增加 58.9 亿 m ,增幅 34%。即 2012/2013 年澜沧江干流梯级电站发
挥的调丰补枯作用使湄公河干流,尤其是清盛站的旱季径流量较多年平均增加显著。多年数据分析
结果表明,澜沧江干流梯级水库运行后总体上增加了湄公河干流干季径流量,对于缓解湄公河干季
旱情和保障流域可持续发展方面有积极作用。
(5)澜沧江-湄公河流域各国应从全流域视角加强水资源开发利用协作,制定科学的流域规划,
充分发挥流域内水利工程的抗旱功能。同时,应意识到澜沧江水库调度只对干流水文过程有影响,
无法缓解支流的大面积旱情,各国应挖掘自身潜力,提高基础设施水平,同时加强水利工程联合调度。
参 考 文 献:
[ 1 ] LESK C,ROWHANI P,RAMANKUTTY N . Influence of extreme weather disasters on global crop production
[J]. Nature,2016,529:84-87 .
[ 2 ] LENG G Y,HALL J . Crop yield sensitivity of global major agricultural countries to droughts and the projected
changes in the future[J]. Science of the Total Environment,2019(654):811-821 .
[ 3 ] ORTH R,DESTOUNI G . Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe[J].
Nature Communication,2018(9). 3602 .
[ 4 ] FANG W,HUANG S,HUANG Q,et al . Probabilistic assessment of remote sensing-based terrestrial vegetation
vulnerability to drought stress of the Loess Plateau in China[J]. Remote Sensing of Environment,2019(232):
111290 .
[ 5 ] MRC . Planning Atlas of the Lower Mekong River Basin[R]. Vientiane:Mekong River Commission,2011 .
[ 6 ] LIU H . Mekong region needs to overcome drought together[N]. Bangkok:Khaosod English,2019 .
[ 7 ] TIAN F,LIU H . China-shared rivers,shared futures[N]. Vientiane:Vientiane Times,2016 .
[ 8 ] Mekong River Commission and Ministry of Water Resources of the People's Republic of China . Joint Observation
and Evaluation of the Emergency Water Supplement from China to the Mekong River[R]. Vientiane:Mekong Riv⁃
er Commission,2016 .
[ 9 ] 陈兴茹,王兴勇,白音包力皋 . 湄公河流域洪旱灾害损失分析[J]. 水利经济,2019,37(1):54-58 .
[ 10] 陈兴茹,王兴勇,白音包力皋,等 . 1900-2017 年湄公河流域五国自然灾害特征分析[J]. 中国水利水电科
学研究院学报,2019,17(5):327-333 .
[ 11] YADU P,MATEO B,JACOB R,et al . A review of the integrated effects of changing climate,land use,and
dams on Mekong River hydrology[J]. Water,2018,10(3). 266 .
[ 12] RASANEN T A,KOPONEN J,LAURI H,et al . Downstream hydrological impacts of hydropower development in
the Upper Mekong Basin[J]. Water Resources Management,2012,26(12):3495-3513 .
[ 13] LIU K,TSENG K,SHUM C K,et al . Assessment of the impact of reservoirs in the Upper Mekong River using
satellite radar altimetry and remote sensing imageries[J]. Remote Sensing,2016,8(5). 367 .
[ 14] RASANEN T A,SOMETH P,LAURI H,et al . Observed river discharge changes due to hydropower operations
in the Upper Mekong Basin[J]. Journal of Hydrology,2017,545:28-41 .
[ 15] 汪伟 . 气候变化情景下水库调度对湄公河洪水的影响研究[D]. 北京:清华大学,2017 .
[ 16] HAN Z,LONG D,FANG Y,et al . Impacts of climate change and human activities on the flow regime of the
dammed Lancang River in Southwest China[J]. Journal of Hydrology,2019,570:96-105 .
[ 17] LAURI H,DE M,WARD H,et al . Future changes in Mekong River hydrology:impact of climate change and
reservoir operation on discharge[J]. Hydrol . Earth Syst . Sci . ,2012,16:4603-4619 .
— 484 —