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Fig.7 Peak pressure distribution at each point at #=0.8 m
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Fig.8 Distribution of peak pressure along the vertical direction at different upstream water depths at different horizontal distances at «=0.3
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Abstract: The release of a large amount of water within a short period of time after dam breaking, forms the dam—
break flood and poses a threat to the safety of downstream structures and buildings. In the present study, a system-
atic numerical study is carried out to investigate the propagation of the dam—break wave and the impact pressure
based on the RNG k—g model. The evolution process of the dam—break waves and the impact pressure of the down-
stream panel versus time are explored. Furthermore, the influences of different ratios a of upstream water depth to
downstream water depth on the peak of impact pressure are investigated. The results indicate that the dam—break
waves during its evolution will lead to a trend of increasing and then flattening the peak of the downstream water sur-
face line. Afterward, due to the influence of the downstream dam wall, the dam-break waves become congested
when the dam—break wave touches the wall and the wave height will increase rapidly. The relative peak value of the
downstream flood wave reaches its maximum value when the ratio of the upsiream water depth to downstream water
depth is equal to 0.3 or «=0.3. With the increase of the ratio o, the propagation velocity of the dam—break wave
and the maximum water level at each monitoring point decrease. In addition, the value of instantaneous impact
pressure also decreases with the increase of the ratio @, and the ratio of the instantaneous impact pressure to the
maximum pressure value decreases after the first impact, which is attributed to the fact that the pressure at the up-
per part of the downstream dam is the hydrostatic pressure, while the pressure at the lower part mainly depends
both on dynamic pressure and hydrostatic pressure. Moreover, the distribution of peak pressure in the vertical di-
rection decreases first, then increases, and finally increases, while the horizontal direction is symmetrically dis-
tributed. The maximum shock pressure appears at the first point above the downstream water depth, which is gen-
erated by the dynamic impact pressure.
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